Policies to Promote Innovation and Safety
Americans must feel confident that the federal regulatory system is keeping pace with the applications of chemistry, including the use of diisocyanates. Our nation’s primary chemicals management law must keep pace with scientific advancements while the agencies work to determine that chemical products are safe for their intended use—while also encouraging innovation and protecting American jobs. Learn more about policies that can help American chemistry continue creating jobs and enhancing safety.
How are consumers protected from potential exposures to diisocyanates?
The vast majority of diisocyanates manufactured are for industrial use. Aromatic diisocyanates are known to cause respiratory sensitization at airborne concentrations above the allowable workplace limits; however, exposure to such airborne concentrations is highly unlikely during the use of consumer products.
Consumer products containing uncured aromatic diisocyanates are very limited (e.g., certain adhesives) and are accompanied by product safety information such as warning labels, the characteristics of the chemicals, their approximate cure time, and how to properly protect yourself while handling the product. Thus, overall, consumer exposures to unreacted diisocyanates are expected to be of very low magnitude and frequency.
How does “curing” take place during formation of a polyurethane product?
This can be explained by looking at how diisocyanates are among the building blocks used to make polyurethanes (PU) products. Curing refers to the reaction that occurs between the two primary chemicals used to form a PU product. These primary chemicals are commonly referred to as a diisocyanate (A-side material) and a polyol (B-side material). The A-side material, or diisocyanate, is highly reactive and curing begins immediately upon mixing with the B-side material. The cure time varies depending on the type of polyurethane product being produced, the ingredient formulations and other factors in the manufacturing process.
Many PU products are completely cured and therefore considered “inert” before they are sold, such as mattresses, pillows, furniture cushions, car seating, refrigerator insulation, footwear, ski bindings or inline skates. This means that the original reactive ingredients, the diisocyanates and the polyols, are no longer present in their original form in the fully cured polyurethane product. As a result of the reaction, they were transformed during production into the finished polyurethane product.
For more answers to questions about diisocyanates, visit the Fast Facts and Frequently Asked Questions section.