

CODE BULLETIN C-66

American Chemistry Council Product Approval Code of Practice March 2024 Edition

То:	Practitioners of the American Chemistry Council Product Approval Code of Practice and Interested Parties			
Original				
Issue date	: July 11, 2024			
Effective				
Date:	August 11, 2024			
Dat	According of the DD12 Souffing Test into the Broduct Approval Code			

Re: Acceptance of the DD13 Scuffing Test into the Product Approval Code of Practice – March 2024 Edition

The American Chemistry Council's (ACC) Product Approval Protocol Task Group (PAPTG) reached consensus to accept the DD13 Scuffing Test into the Product Approval Code of Practice. DD13 Scuffing Test information is incorporated into the following Appendices:

Appendix A- Requirements for Engine Test Stand/Laboratory

Calibration Appendix B- Candidate Scheduling, Registration and

Tracking Procedure Appendix F- Multiple Test Evaluation Procedures

Existing text and proposed edits to the relevant Appendices are provided below. Please note: existing text and proposed edits are combined; existing text is in black and proposed edits are in **red** text.

Existing Text and Proposed Text on Page A-1

The requirements for the engine test types currently covered by the Code are defined by test type as:

Sequences IIIH, IIIHA, IIIHB, IIIH60, IIIH70, IVA, IVB, VH, VIE, VIF, VIII, IX, IX Aged Oil, X; Caterpillar 1K, 1N, 1P, 1R, C13, Caterpillar Engine Oil Aeration Test (COAT); DD13; Mack T-8, T-8E, T-11, T-12; Roller Follower Wear Test (RFWT); Cummins ISB, Cummins ISM and Volvo T-13.

Existing Text and Proposed Text on Page B-3

e) Test: An up-to-eight character code used to designate the type of test run.

PC		HD	
Test	Code	Test	Code
Sequence IIIH Sequence IIIHA Sequence IIIHB Sequence IIIH60 Sequence IVA Sequence IVB Sequence VH Sequence VIE Sequence VIF Sequence VIF Sequence IX Sequence IX Sequence IX	IIIH IIIHA IIIHB IIIH60 IIIH70 IVA IVB VH VIE VIF VIF VIII IX IXAGED X	Caterpillar 1N Caterpillar 1K Caterpillar 1P Caterpillar 1R Caterpillar C13 Mack T-8 Mack T-8E Mack T-11 Mack T-12 Cummins ISB Cummins ISB Cummins ISM Roller Follower Wear Test CAT Oil Aeration Test Volvo T-13 DD13 Scuffing Test	1N 1K 1P 1R C13 T8 T8E T11 T12 ISB ISM 65L COAT T13 DD13

This code is permanent for each test type and is assigned by the ACC Monitoring Agency. The Test Sponsor inserts this code.

Existing Text and Proposed Text on Page F-4 through F-7

MTEP Methods for Rated Parameters

As indicated in the "MTEP Guidelines" section above, when a specification includes requirements for handling data from multiple tests, the specified MTEP method shall be used for that specification. However, for any specification that does not specify an MTEP method (e.g., an ACEA specification); the technique specified in the following table shall be used.

	Type of	
Test	MTEP	Parameter (Units) (note 1)
Sequence IIIF	MTAC	Kinematic Viscosity (% increase at 40°C)
	MTAC	Avg. piston skirt varnish (merits)
	MTAC	Weighted piston deposit (merits)
	MTAC	Screened avg. cam plus lifter wear (µm)
	(note 2)	Hot stuck rings
Sequence IIIFHD	MTAC	Kinematic Viscosity @ 60 h (% increase)
Sequence IIIG	MTAC	Kinematic Viscosity (% increase at 40°C)
	MTAC	Weighted piston deposit (merits)
	MTAC	Avg. cam plus lifter wear (μm)
	(note 2)	Hot stuck rings
Sequence IIIGA	None	No MTEP, No MTAC
Sequence IIIGB	MTAC	Phosphorus retention (%)
Sequence IIIH	MTAC	Kinematic Viscosity (% increase at 40°C)
	MTAC	Weighted piston deposit (merits)
Sequence IIIHA	MTAC	MRV Viscosity (%)
Sequence IIIHB	MTAC	Phosphorus retention (%)

	Sequence IIIH60	MTAC	Kinematic Viscosity (% increase at 40°C)
-	Sequence IIIH70	MTAC MTAC MTAC	Kinematic Viscosity (% increase at 40°C) Weighted piston deposit (merits) Average Piston Skirt Varnish (merits)
	Sequence IVA	MTAC	Avg. cam wear (μm)
	Sequence IVB	MTAC MTAC	Avg Volume Loss Intake Bucket Lifter (mm ³) End of Test Iron (mg/kg)
-	Sequence VG	MTAC MTAC MTAC MTAC MTAC (note 3)	Avg. engine sludge (merits) Rocker arm cover sludge (merits) Avg. piston skirt varnish (merits) Avg. engine varnish (merits) <i>Oil screen clogging (%)</i> Hot stuck compression rings
	Sequence VH	MTAC MTAC MTAC MTAC (note 3)	Avg. engine sludge (merits) <i>Rocker arm cover sludge (merits)</i> Avg. piston skirt varnish (merits) Avg. engine varnish (merits) Hot stuck compression rings
	Sequence VID	MTAC MTAC	FEI 2 (%) FEI SUM (%)
	Sequence VIE	MTAC MTAC	FEI 2 (%) FEI SUM (%)
	Sequence VIF	MTAC MTAC	FEI 2 (%) FEI SUM (%)
	Sequence VIII	MTAC	Bearing weight loss (mg)
	Sequence IX	MTAC MTAC	Average Number of Preignitions Maximum Event
	Sequence IX Aged Oil	MTAC MTAC	Average Number of Preignitions Maximum Event
	Sequence X	MTAC	Chain Wear Stretch (%)
	Caterpillar 1K	TLM TLM TLM TLM (note 4) (note 5)	WDK (demerits) Top Groove Fill (%) <i>Top Land Heavy Carbon (%)</i> Avg. Oil Consumption (g/kW·h) Piston Ring Sticking (yes or no) Piston, Ring and Liner Scuffing (yes or no)
	Caterpill ar 1MPC (note 5)	MTAC (note 6) MTAC (note 4) (note 7)	WTD (demerits) Top Groove Fill (%) Piston Ring Sticking (yes or no) Piston, Ring and Liner Scuffing (yes or no)
	Caterpillar 1N	TLM TLM TLM TLM(note 4) (note 5)	WDN (demerits) Top Groove Fill (%) <i>Top Land Heavy Carbon (%)</i> Oil Consumption (g/kWh) Piston Ring Sticking (yes or no) Piston, Ring and Liner Scuffing (yes or no)

Caterpillar 1P	TLM	WDP (demerits)
	TLM	Top Groove Carbon (demerits)
	TLM	Top Land Carbon (demerits)
	TLM	Avg. Oil Consumption (0-360h) (g/h)
	TLM(note 5)	Final Oil Consumption (312-360h) (g/h)
		Piston, Ring and Liner Scuffing (yes or no)
Caterpillar 1R	TLM	WDR (demerits)
	TLM	Top Groove Carbon (demerits)
	TLM	Top Land Carbon (demerits)
	TLM	Avg. Initial (0-252 h) Oil Consumption (g/h)
	TLM(note 5)	Avg. Final (432-504 h) Oil Consumption (g/h)
Cotornillon C40	MDC	Piston, Ring and Liner Scuffing (yes or no)
Caterpillar C13	MRS (note 4)	Caterpillar C13 Merits Delta Oil Consumption (g/h)
	(note 8)	Average Top Land Carbon (Demerits)
		Average Top Cand Carbon (Dements) Average Top Groove Carbon (Demerits)
		Second Ring Top Carbon (Dements)
Cumming ISM	MRS	
Cummins ISM	(note 8)	Cummins ISM Merits Crosshead Weight Loss (mg)
		Injector Screw Wear (mg)
		Oil Filter Pressure Delta (kPa)
		Sludge (merits)
	TLM	Top Ring Weight Loss (mg)
Cummins ISB	TLM	Average Camshaft Wear (µm)
	TLM	Average Tappet Weight Loss (mg)
Roller Follower	TLM	Average pin wear (mils, max)
Wear Test		(µm, max)
Mack T-8	TLM	Viscosity Increase at 3.8% soot (cSt)
	TLM	Filter Plugging, Differential Pressure (kPa)
	TLM	Oil Consumption (g/kWh)
Mack T-8E	TLM	Viscosity Increase at 3.8% soot (cSt)
N A A A A	TLM	Relative Viscosity at 4.8% soot (unitless number)
Mack T-11	TLM	TGA % Soot @ 4.0 cSt increase @ 100° C
		TGA % Soot @ 12.0 cSt increase @ 100° C
Maak T 40		TGA % Soot @ 15.0 cSt increase @ 100° C
Mack T-12	TLM	Liner Wear, µm
(note 9)		Top Ring Mass Loss, mg Lead Content at EOT, mg/kg
Mack T-12	MRS	Cylinder Liner Wear, µm
(note 10)		Top Ring Mass Loss, mg
		Delta Pb @ EOT, mg/kg
		Delta Pb 250 to 300 hours, mg/kh
		Oil Consumption, g/hr
Mack T-12	MTAC	Top Ring Mass Loss, mg
(note 11)	(note 12)	Cylinder Liner Wear, µm
Volvo T-13		IR Peak at EOT, Abs., cm ⁻¹
VUIVU 1-13	TLM	Kinematic Viscosity Increase at 40°C, %
CAT Oil Aeration	MTAC	
Test	(note 12)	Average Aeration, 40h to 50h, %
DD13 Scuffing	MTAC	Hours to scuff, hours
	(note 12)	
	(

Notes:

- 1. Units for parameters in italics are transformed. See next section for specific transformations.
- 2. The majority of retained tests must not have ring sticking (hot stuck).
- 3. The majority of retained tests must not have compression ring sticking (hot stuck).
- 4. None of the retained tests may have piston ringsticking.
- 5. If three or more operationally valid tests have been run, the majority of these tests must not have scuffing. Any scuffed tests are considered non-interpretable, and no data from these tests are to be used in MTEP calculations.
- 6. Two methods of calculating WTD are used, one for API Category CF and a different one for API Category CF-2. Both methods use MTAC for handling test results.
- 7. None of the retained tests may have piston, ring or liner scuffing.
- 8. The parameters used in calculating the Merit Rating value are shown.
- 9. This TLM applies to Mack T-12 used in API Category CH-4.
- 10. This MRS applies to Mack T-12 used in API Category CI-4 and CJ-4.
- 11. This MTAC applies to Mack T-12 used in API Category CK-4 and FA-4.
- 12. The MTAC provision to discard any valid test result is not applicable (See Appendix F, pg. F-3, Three or More Tests, Number 2).

The Code is available online at <u>https://www.americanchemistry.com/industry-groups/petroleum-additives/product-approval-protocol-task-group-paptg/code-of-practice-resources</u>. Comments to this Code Bulletin (C-66) should be sent to the PAPTG Manager, Colleen Stevens, prior to August 11, 2024.